\triangle Ch. 6 Trig Functions (triangle approach)

Ch. 5 Trig Functions (unit circle approach)

- Sine
- Cosine
- Tangent

- Cosecant
- Secant
- Cotangent

Notes: 5.1

The Unit Circle

Radius $=1$
Center at the origin $(0,0)$
Equation of a circle:
since $\mathrm{r}=1 \rightarrow x^{2}+y^{2}=1$

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& \rightarrow \longdiv { x ^ { 2 } + y ^ { 2 } = 1 }
\end{aligned}
$$

Notes: 5.1

reference number = reference angle from ch. 6 (in radians instead of degrees)
$\mathrm{t}=$ distance traveled along unit circle in radians
$\overline{\mathrm{t}}=$ reference number (angle)
$P=$ terminal Point...referred to as $P=(x, y)$
(similar to terminal side from ch.6)

The point $P(x, y)$ is called the

Notes: 5.1

terminal point determined by the real number t.

t is the distance traveled around the circle. A positive t value moves counter-clockwise to $\mathbf{P}(\mathbf{x}, \mathbf{y})$

A negative t value moves clockwise to terminal point $\mathrm{P}(\mathrm{x}, \mathrm{y})$

Notes: 5.1

reference number $=$ reference angle from chapter 6 (in radians instead of degrees) EXAMPLES \rightarrow Find the reference angle:

b) $\frac{5 \pi}{6}$

d) $\frac{5 \pi}{3}$ ret angle $\frac{\pi}{3}$

From chapter $6 \uparrow$
New representation in chapter $5 \uparrow$

Summary \rightarrow No work necessary if it is in

 reduced form. Just write the problem and its reference number/angle.$$
\frac{8 \pi}{6} \rightarrow
$$

$$
\begin{aligned}
& \frac{5 \pi}{4} \rightarrow \text { reference angle is } \frac{\pi}{4} \\
& \frac{4 \pi}{3} \rightarrow \text { reference angle is } \frac{\pi}{3} \\
& \frac{5 \pi}{6} \rightarrow \text { reference angle is } \frac{\pi}{6}
\end{aligned}
$$

Special Triangles in the unit circle:

hypotenuse must be 1 so legs are now fractions since they are less than 1.

Today's assignment: 5.1 \#11-19odd, 21-36, 37a-c, 38a-c, 41-50
9-14 Points on the Unit Circle Find the missing coordinate of P, using the fact that P lies on the unit circle in the given quadrant.

Label the coordinates AND radian value for each highlighted point on the unit circle.

Please put \#21,22 on resource page

$$
\begin{aligned}
& \text { 22. }\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)^{y} \quad\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \quad\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

23-36 ■ Terminal Points Find the terminal point $P(x, y)$ on the unit circle determined by the given value of t.
23. $t=4 \pi$ too large

$$
\frac{-2 \pi}{2 \pi} \text { coterminal }
$$

$P=(1,0)$
25. $t=\frac{3 \pi}{2} \quad P=(0,-1)$
27. $t=-\frac{\pi}{6}+\frac{2 \pi}{1} \frac{(6)}{(6)}$

$$
=\frac{-\pi}{6}+\frac{12 \pi}{6}=\frac{11 \pi}{6} \quad P=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)
$$

24. $t=-3 \pi$

$$
\begin{aligned}
& \frac{+4 \pi}{\pi \text { coterminal }} 2 \pi(2) \\
& P=(-1,0)
\end{aligned}
$$

26. $t=\frac{5 \pi}{2}-\frac{2 \pi}{1}(2)=\frac{5 \pi}{2} \cdot \frac{4 \pi}{2}$

$$
=\frac{\pi}{2}
$$

28. $t=\frac{7 \pi}{6}$
$P=(0,-1)$
\#37, 38a-c \rightarrow No work necessary if in reduced form. Write the problem and then its reference number (angle)

37-40 ■ Reference Numbers Find the reference number for each value of t.
-.37. (a) $t=\frac{4 \pi}{3}$
(b) $t=\frac{5 \pi}{3}$
(c) $t=-\frac{7 \pi}{6}$
38. (a) $t=9 \pi$

$$
\text { (c) } t=\frac{25 \pi}{6}
$$

Similar to example (parts b \&

 (parts b \& example givenin today's notes

\#41-50

\rightarrow No work needed for reference number (angle).
\rightarrow Work may need to be shown to find coterminal angle to identify the terminal point.

41-54 ■ Terminal Points and Reference Numbers Find (a) the reference number for each value of t and (b) the terminal point determined by t.
4. 41. $t=\frac{11 \pi}{6}$
43. $t=-\frac{4 \pi}{3}$
44. $t=\frac{5 \pi}{3}$

